Database Design and Normal Forms

Database Design

coming up with a 'good' schema is very important

How do we characterize the "goodness" of a schema?

If two or more alternative schemas are available how do we compare them?

What are the problems with "bad" schema designs?

Normal Forms:

Each normal form specifies certain conditions
If the conditions are satisfied by the schema
certain kind of problems are avoided

Details follow....

An Example

student relation with attributes: studName, rollNo, sex, studDept department relation with attributes: deptName, officePhone, hod

Several students belong to a department. studDept gives the name of the student's department.

Correct schema:

Student Dept

studName rollNo sex deptNam	me officePhone HOD
-----------------------------	--------------------

What are the problems that arise?

Problems with bad schema

Redundant storage of data:

Office Phone & HOD info - stored redundantly

- once with each student that belongs to the department
- wastage of disk space

A program that updates Office Phone of a department

- must change it at several places
 - more running time
 - error prone

Transactions running on a database

 must take as short time as possible to increase transaction throughput

Update Anomalies

Another kind of problem with bad schema Insertion anomaly:

No way of inserting info about a new department unless we also enter details of a (dummy) student in the department

Deletion anomaly:

If all students of a certain department leave and we delete their tuples, information about the department itself is lost

Update Anomaly:

Updating officePhone of a department

- value in several tuples needs to be changed
- if a tuple is missed inconsistency in data

Normal Forms

First Normal Form (1NF) - included in the definition of a relation

Second Normal Form (2NF)

Third Normal Form (3NF)

defined in terms of functional dependencies

Boyce-Codd Normal Form (BCNF)

Fourth Normal Form (4NF) - defined using multivalued dependencies

Fifth Normal Form (5NF) or Project Join Normal Form (PJNF) defined using join dependencies

Functional Dependencies

```
A functional dependency (FD) X \rightarrow Y

(read as X determines Y) (X \subseteq R, Y \subseteq R)

is said to hold on a schema R if

in any instance r on R,

if two tuples t_1, t_2 (t_1 \neq t_2, t_1 \in r, t_2 \in r)

agree on X i.e. t_1[X] = t_2[X]

then they also agree on Y i.e. t_1[Y] = t_2[Y]
```

Note: If $K \subset R$ is a key for R then for any $A \in R$, $K \to A$ holds because the above ifthen condition is vacuously true

Functional Dependencies – Examples

Consider the schema:

Student (studName, rollNo, sex, dept, hostelName, roomNo)

Since rollNo is a key, rollNo → {studName, sex, dept, hostelName, roomNo}

Suppose that each student is given a hostel room exclusively, then hostelName, roomNo → rollNo

Suppose boys and girls are accommodated in separate hostels, then hostelName → sex

FDs are additional constraints that can be specified by designers

Trivial / Non-Trivial FDs

An FD $X \rightarrow Y$ where $Y \subseteq X$

- called a trivial FD, it always holds good

An FD $X \rightarrow Y$ where $Y \nsubseteq X$

- non-trivial FD

An FD $X \rightarrow Y$ where $X \cap Y = \phi$

- completely non-trivial FD

Deriving new FDs

Given that a set of FDs F holds on R we can infer that a certain new FD must also hold on R

For instance, given that $X \to Y$, $Y \to Z$ hold on R we can infer that $X \to Z$ must also hold

How to systematically obtain all such new FDs?

Unless all FDs are known, a relation schema is not fully specified

Entailment relation

We say that a set of FDs $F \models \{X \rightarrow Y\}$ (read as F entails $X \rightarrow Y$ or F logically implies $X \rightarrow Y$) if in every instance r of R on which FDs F hold, $FD \ X \rightarrow Y$ also holds.

Armstrong came up with several inference rules for deriving new FDs from a given set of FDs

We define
$$F^+ = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$$

 F^+ : Closure of F

Armstrong's Inference Rules (1/2)

1. Reflexive rule

$$F \models \{X \rightarrow Y \mid Y \subseteq X\}$$
 for any X. Trivial FDs

2. Augmentation rule

$$\{X \to Y\} \models \{XZ \to YZ\}, Z \subseteq R. \text{ Here } XZ \text{ denotes } X \cup Z$$

3. Transitive rule

$$\{X \to Y, Y \to Z\} \models \{X \to Z\}$$

4. Decomposition or Projective rule

$$\{X \to YZ\} \models \{X \to Y\}$$

5. Union or Additive rule

$$\{X \to Y, X \to Z\} \models \{X \to YZ\}$$

6. Pseudo transitive rule

$$\{X \to Y, WY \to Z\} \models \{WX \to Z\}$$

Armstrong's Inference Rules (2/2)

Rules 4, 5, 6 are not really necessary.

For instance, Rule 5: $\{X \to Y, X \to Z\} \models \{X \to YZ\}$ can be proved using 1, 2, 3 alone

- 1) $X \rightarrow Y$ 2) $X \rightarrow Z$ given
- 3) $X \rightarrow XY$ Augmentation rule on 1
- 4) $XY \rightarrow ZY$ Augmentation rule on 2
- 5) $X \rightarrow ZY$ Transitive rule on 3, 4.

Similarly, 4, 6 can be shown to be unnecessary. But it is useful to have 4, 5, 6 as short-cut rules

Sound and Complete Inference Rules

Armstrong showed that

Rules (1), (2) and (3) are sound and complete.

These are called Armstrong's Axioms (AA)

Soundness:

Every new FD X \rightarrow Y derived from a given set of FDs F using Armstrong's Axioms is such that F \models {X \rightarrow Y}

Completeness:

Any FD X \rightarrow Y logically implied by F (i.e. F \models {X \rightarrow Y}) can be derived from F using Armstrong's Axioms

Proving Soundness

Suppose $X \rightarrow Y$ is derived from F using AA in some n steps.

If each step is correct then overall deduction would be correct.

Single step: Apply Rule (1) or (2) or (3)

Rule (1) – obviously results in correct FDs

Rule
$$(2) - \{X \rightarrow Y\} \models \{XZ \rightarrow YZ\}, Z \subseteq R$$

Suppose $t_1, t_2 \in r$ agree on XZ

$$\Rightarrow$$
 t₁, t₂ agree on X

$$\Rightarrow$$
 t₁, t₂ agree on Y (since X \rightarrow Y holds on r)

$$\Rightarrow$$
 t₁, t₂ agree as YZ

Hence Rule (2) gives rise to correct FDs

Rule (3) –
$$\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$$

Suppose $t_1, t_2 \in r$ agree on X

$$\Rightarrow$$
 t₁, t₂ agree on Y (since X \rightarrow Y holds)

$$\Rightarrow$$
 t₁, t₂ agree on Z (since Y \rightarrow Z holds)

Proving Completeness of Armstrong's Axioms (1/4)

Define X_F^+ (closure of X wrt F) = $\{A \mid X \to A \text{ can be derived from F using } AA\}, A \in R$

Claim1:

 $X \rightarrow Y$ can be derived from F using AA iff $Y \subseteq X^{+}$

(If) Let
$$Y = \{A_1, A_2, ..., A_n\}$$
. $Y \subseteq X^+$

$$\Rightarrow$$
 X \rightarrow A_i can be derived from F using AA (1 \leq i \leq n)

By union rule, it follows that $X \rightarrow Y$ can be derived from F.

(Only If) $X \rightarrow Y$ can be derived from F using AA

By projective rule $X \to A_i$ ($1 \le i \le n$)

Thus by definition of X^+ , $A_i \in X^+$

$$\Rightarrow Y \subseteq X^+$$

Completeness of Armstrong's Axioms (2/4)

Completeness:

$$(F \models \{X \rightarrow Y\}) \Rightarrow X \rightarrow Y \text{ follows from F using AA}$$

We will prove the contrapositive:

 $X \rightarrow Y$ can't be derived from F using AA

$$\Rightarrow F \not\models \{X \rightarrow Y\}$$

 $\Rightarrow \exists$ a relation instance r on R st all the FDs of F hold on r but $X \rightarrow Y$ doesn't hold.

Consider the relation instance r with just two tuples:

X⁺ attributes Other attributes

Completeness Proof (3/4)

Claim 2: All FDs of F are satisfied by r

Suppose not. Let $W \rightarrow Z$ in F be an FD not satisfied by r

Then $W \subseteq X^+$ and $Z \nsubseteq X^+$

Let $A \in Z - X^+$

Now, $X \to W$ follows from F using AA as $W \subseteq X^+$ (claim 1)

 $X \rightarrow Z$ follows from F using AA by transitive rule

 $Z \rightarrow A$ follows from F using AA by reflexive rule as $A \in Z$

 $X \rightarrow A$ follows from F using AA by transitive rule

By definition of closures, A must belong to X⁺

- a contradiction.

Hence the claim.

Completeness Proof (4/4)

Claim 3: X → Y is not satisfied by r
Suppose not
Because of the structure of r, Y ⊆ X⁺
⇒ X → Y can be derived from F using AA
contradicting the assumption about X → Y
Hence the claim

Thus, whenever $X \to Y$ doesn't follow from F using AA, F doesn't logically imply $X \to Y$ Armstrong's Axioms are complete.

Consequence of Completeness of AA

$$X^{+} = \{A \mid X \to A \text{ follows from F using AA}\}\$$

= $\{A \mid F \models X \to A\}$

Similarly

$$F^{+} = \{X \to Y \mid F \models X \to Y\}$$

$$= \{X \to Y \mid X \to Y \text{ follows from F using AA}\}$$

Computing closures

The size of F⁺ can sometimes be exponential in the size of F.

For instance,
$$F = \{A \rightarrow B_1, A \rightarrow B_2, \dots, A \rightarrow B_n\}$$

 $F^+ = \{A \rightarrow X\}$ where $X \subseteq \{B_1, B_2, \dots, B_n\}$.
Thus $|F^+| = 2^n$

Computing F⁺: computationally expensive

Fortunately, checking if $X \to Y \in F^+$ can be done by checking if $Y \subseteq X_F^+$

Computing attribute closure (X⁺_F) is easier

Computing X⁺_F

We compute a sequence of sets $X_0, X_1,...$ as follows:

$$X_0:=X$$
; // X is the given set of attributes $X_{i+1}:=X_i \cup \{A \mid \text{there is a FD Y} \rightarrow Z \text{ in F}$ and $A \in Z \text{ and Y} \subseteq X_i\}$

Since $X_0 \subseteq X_1 \subseteq X_2 \subseteq ... \subseteq X_i \subseteq X_{i+1} \subseteq ... \subseteq R$ and R is finite, There is an integer i st $X_i = X_{i+1} = X_{i+2} = ...$ and X_F^+ is equal to X_i .

Normal Forms – 2NF

Full functional dependency:

An FD $X \to A$ for which there is <u>no</u> proper subset Y of X such that $Y \to A$ (A is said to be fully functionally dependent on X)

2NF: A relation schema R is in 2NF if every non-prime attribute is fully functionally dependent on any key of R

prime attribute: A attribute that is part of some key non-prime attribute: An attribute that is not part of any key

Example

1) Book (authorName, title, authorAffiliation, ISBN, publisher, pubYear)

Keys: (authorName, title), ISBN

Not in 2NF as authorName → authorAffiliation

(authorAffiliation is not fully functionally dependent on the first key)

2) Student (rollNo, name, dept, sex, hostelName, roomNo, admitYear)

Keys: rollNo, (hostelName, roomNo) Not in 2NF as hostelName \rightarrow sex

student (rollNo, name, dept, hostelName, roomNo, admitYear) hostelDetail (hostelName, sex)

- There are both in 2NF

Transitive Dependencies

Transitive dependency:

An FD $X \rightarrow Y$ in a relation schema R for which there is a set of attributes $Z \subseteq R$ such that

 $X \rightarrow Z$ and $Z \rightarrow Y$ and Z is not a subset of any key of R

Ex: student (rollNo, name, dept, hostelName, roomNo, headDept)
Keys: rollNo, (hostelName, roomNo)
rollNo → dept; dept → headDept hold
So, rollNo → headDept a transitive dependency

Head of the dept of dept D is stored redundantly in every tuple where D appears.

Relation is in 2NF but redundancy still exists.

Normal Forms – 3NF

Relation schema R is in 3NF if it is in 2NF and no non-prime attribute of R is transitively dependent on any key of R

student (rollNo, name, dept, hostelname, roomNo, headDept) is not in 3NF

Decompose: student (<u>rollNo</u>, name, dept, <u>hostelName</u>, <u>roomNo</u>) deptInfo (<u>dept</u>, headDept) both in 3NF

Redundancy in data storage - removed

Another definition of 3NF

Relation schema R is in 3NF if for any nontrivial FD $X \rightarrow A$ either (i) X is a superkey or (ii) A is prime.

Suppose some R violates the above definition

- \Rightarrow There is an FD X \rightarrow A for which both (i) and (ii) are false
- \Rightarrow X is not a superkey and A is non-prime attribute

Two cases arise:

- 1) X is contained in a key A is not fully functionally dependent on this key
 - violation of 2NF condition
- 2) X is not contained in a key
 - $K \rightarrow X$, $X \rightarrow A$ is a case of transitive dependency (K any key of R)

Motivating example for BCNF

gradeInfo (rollNo, studName, course, grade)

Suppose the following FDs hold:

- 1) rollNo, course \rightarrow grade Keys:
- 2) studName, course \rightarrow grade (rollNo, course)
- 3) rollNo → studName (studName, course)
- 4) studName → rollNo

For 1,2 lhs is a key. For 3,4 rhs is prime So gradeInfo is in 3NF

But studName is stored redundantly along with every course being done by the student

Boyce - Codd Normal Form (BCNF)

Relation schema R is in BCNF if for every nontrivial FD $X \rightarrow A$, X is a <u>superkey</u> of R.

In gradeInfo, FDs 3, 4 are nontrivial but lhs is not a superkey So, gradeInfo is not in BCNF

Decompose:

gradeInfo (<u>rollNo</u>, <u>course</u>, grade) studInfo (<u>rollNo</u>, <u>studName</u>)

Redundancy allowed by 3NF is disallowed by BCNF

BCNF is stricter than 3NF 3NF is stricter than 2NF

Decomposition of a relation schema

If R doesn't satisfy a particular normal form, we decompose R into smaller schemas

What's a decomposition?

$$R = (A_1, A_2, ..., A_n)$$

$$D = (R_1, R_2, ..., R_k) \text{ st } R_i \subseteq R \text{ and } R = R_1 \cup R_2 \cup ... \cup R_k$$

$$(R_i\text{'s need not be disjoint})$$

Replacing R by $R_1, R_2, ..., R_k$ – process of decomposing R

Ex: gradeInfo (rollNo, studName, course, grade)

R₁: gradeInfo (rollNo, course, grade)

R₂: studInfo (<u>rollNo</u>, studName)

Desirable Properties of Decompositions

Not all decomposition of a schema are useful

We require two properties to be satisfied

- (i) Lossless join property
 - the information in an instance r of R must be preserved in the instances $r_1, r_2, ..., r_k$ where $r_i = \pi_{R_i}(r)$
- (ii) Dependency preserving property
 - if a set F of dependencies hold on R it should be possible to enforce F by enforcing appropriate dependencies on each r_i

Lossless join property

F – set of FDs that hold on R

R – decomposed into $R_1, R_2, ..., R_k$

Decomposition is *lossless* wrt F if

for every relation instance r on R satisfying F,

$$r = \pi_{R_1}(r) * \pi_{R_2}(r) * ... * \pi_{R_k}(r)$$

$$R = (A, B, C); R_1 = (A, B); R_2 = (B, C)$$

r: A B C $a_1 b_1 c_1$

 a_2 b_2 c_2

 $a_3 b_1 c_3$

Lossy join

$$\begin{array}{c} r_1: \ \underline{A} \quad \underline{B} \\ \hline a_1 \quad b_1 \\ a_2 \quad b_2 \\ a_3 \quad b_1 \end{array}$$

 r_2 : $\frac{B}{b_1} \frac{C}{c_1}$ $r_1 * r_2$: $\frac{b_2}{b_2} \frac{c_2}{c_2}$ $\frac{b_1}{c_3}$

Spurious tuples

Lossless joins are also called non-additive joins

Original info is distorted

 $\begin{array}{c|cccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_1 & b_1 & c_3 \end{array}$

 $a_2 b_2 c_2$

 a_3 b_1 c_1

 $a_3 b_1 c_3$

Dependency Preserving Decompositions

Decomposition $D = (R_1, R_2,...,R_k)$ of schema R preserves a set of dependencies F if

$$(\pi_{R_1}(F) \cup \pi_{R_2}(F) \cup ... \cup \pi_{R_k}(F))^+ = F^+$$

Here, $\pi_{R_i}(F) = \{ (X \to Y) \in F^+ | X \subseteq R_i, Y \subseteq R_i \}$ (called projection of F onto R_i)

Informally, any FD that logically follows from F must also logically follow from the union of projections of F onto R_i's Then, D is called dependency preserving.

An example

Schema R =
$$(A, B, C)$$

FDs F = $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

Decomposition D =
$$(R_1 = \{A, B\}, R_2 = \{B, C\})$$

 $\pi_{R_1}(F) = \{A \to B, B \to A\}$
 $\pi_{R_2}(F) = \{B \to C, C \to B\}$

$$(\pi_{R_1}(F) \cup \pi_{R_2}(F))^+ = \{A \to B, B \to A, B \to C, C \to B, A \to C, C \to A\} = F^+$$

Hence Dependency preserving

Testing for lossless decomposition property(1/6)

- R given schema with attributes $A_1, A_2, ..., A_n$
- F given set of FDs
- $D \{R_1, R_2, ..., R_m\}$ given decomposition of R

Is D a lossless decomposition?

Create an $m \times n$ matrix S with columns labeled as $A_1, A_2, ..., A_n$ and rows labeled as $R_1, R_2, ..., R_m$

Initialize the matrix as follows:

set S(i,j) as symbol b_{ij} for all i,j.

if A_j is in the scheme R_i , then set S(i,j) as symbol a_j , for all i,j

Testing for lossless decomposition property(2/6)

After S is initialized, we carry out the following process on it:

repeat

```
for each functional dependency U \rightarrow V in F do

for all rows in S which agree on U-attributes do

make the symbols in each V- attribute column

the same in all the rows as follows:

if any of the rows has an "a" symbol for the column

set the other rows to the same "a" symbol in the column

else // if no "a" symbol exists in any of the rows

choose one of the "b" symbols that appears

in one of the rows for the V-attribute and

set the other rows to that "b" symbol in the column

until no changes to S
```

At the end, if there exists a row with all "a" symbols then D is lossless otherwise D is a lossy decomposition

Testing for lossless decomposition property(3/6)

R = (rollNo, name, advisor, advisorDept, course, grade)

FD's = { rollNo → name; rollNo → advisor; advisor → advisorDept rollNo, course → grade}

D: { R₁ = (rollNo, name, advisor), R₂ = (advisor, advisorDept), R₃ = (rollNo, course, grade) }

Matrix S: (Initial values)

	rollNo	name	advisor	advisor Dept	course	grade
R ₁	a ₁	a_2	a_3	b ₁₄	b ₁₅	b ₁₆
R ₂	b ₂₁	b ₂₂	a_3	a_4	b ₂₅	b ₂₆
R_3	a ₁	b ₃₂	b ₃₃	b ₃₄	a ₅	a_6

Testing for lossless decomposition property(4/6)

R = (rollNo, name, advisor, advisorDept, course, grade)

FD's = { rollNo → name; rollNo → advisor; advisor → advisorDept rollNo, course → grade}

D: { R₁ = (rollNo, name, advisor), R₂ = (advisor, advisorDept), R₃ = (rollNo, course, grade) }

Matrix S: (After enforcing rollNo \rightarrow name & rollNo \rightarrow advisor)

	rollNo	name	advisor	advisor Dept	course	grade
R ₁	a ₁	a_2	a_3	b ₁₄	b ₁₅	b ₁₆
R ₂	b ₂₁	b ₂₂	a_3	a_4	b ₂₅	b ₂₆
R_3	a ₁	b ₃₂ a ₂	b ₃₃ a ₃	b ₃₄	a ₅	a ₆

Testing for lossless decomposition property(5/6)

R = (rollNo, name, advisor, advisorDept, course, grade)

FD's = { rollNo → name; rollNo → advisor; advisor → advisorDept rollNo, course → grade}

D: { R₁ = (rollNo, name, advisor), R₂ = (advisor, advisorDept), R₃ = (rollNo, course, grade) }

Matrix S : (After enforcing advisor → advisorDept)

	rollNo	name	advisor	advisor Dept	course	grade
R ₁	a ₁	a_2	a_3	b ₁₄ a ₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a_3	a_4	b ₂₅	b ₂₆
R_3	a ₁	b ₃₂ a ₂	$b_{33}a_3$	b ₃₄ a ₄	a ₅	a_6

No more changes. Third row with all a symbols. So a lossless join.

Testing for lossless decomposition property(6/6)

```
R – given schema. F – given set of FDs

The decomposition of R into R_1, R_2 is lossless wrt F if and only if either R_1 \cap R_2 \to (R_1 - R_2) belongs to F^+ or R_1 \cap R_2 \to (R_2 - R_1) belongs to F^+
```

```
Eg. gradeInfo (rollNo, studName, course, grade)
with FDs = {rollNo, course → grade; studName, course → grade;
rollNo → studName; studName → rollNo}
decomposed into
grades (rollNo, course, grade) and studInfo (rollNo, studName)
is lossless because
rollNo → studName
```

A property of lossless joins

 D_1 : $(R_1, R_2, ..., R_K)$ lossless decomposition of R wrt F

D₂: $(R_{i1}, R_{i2}, ..., R_{ip})$ lossless decomposition of R_i wrt $F_i = \pi_{R_i}(F)$

Then

$$D = (R_1, R_2, \dots, R_{i-1}, R_{i1}, R_{i2}, \dots, R_{ip}, R_{i+1}, \dots, R_k) \text{ is a}$$

$$lossless decomposition of R wrt F$$

This property is useful in the algorithm for BCNF decomposition

Algorithm for BCNF decomposition

R – given schema. F – given set of FDs

```
D = \{R\} \quad /\!/ \text{ initial decomposition} while there is a relation schema R_i in D that is not in BCNF do \{ \text{ let } X \to A \text{ be the FD in } R_i \text{ violating BCNF;} Replace R_i by R_{i1} = R_i - \{A\} and R_{i2} = X \cup \{A\} in D; \}
```

Decomposition of R_i is lossless as $R_{i1} \cap R_{i2} = X$, $R_{i2} - R_{i1} = A$ and $X \rightarrow A$

Result: a lossless decomposition of R into BCNF relations

Dependencies may not be preserved (1/2)

Nama tayınNama distNama

Consider the schema: townInfo (stateName, townName, distName) with the FDs F: ST \rightarrow D (town names are unique within a state) D \rightarrow S

Keys: ST, DT. – all attributes are prime

- relation in 3NF

Relation is not in BCNF as $D \rightarrow S$ and D is not a key

Decomposition given by algorithm: R_1 : TD R_2 : DS

Not dependency preserving as $\pi_{R_1}(F)$ = trivial dependencies

$$\pi_{R_2}^{-1}(F) = \{D \to S\}$$

Union of these doesn't imply $ST \rightarrow D$ $ST \rightarrow D$ can't be enforced unless we perform a join.

Dependencies may not be preserved (2/2)

Consider the schema: R (A, B, C)

with the FDs F: AB \rightarrow C and C \rightarrow B

Keys: AB, AC – relation in 3NF (all attributes are prime)

– Relation is not in BCNF as $C \rightarrow B$ and C is not a key

Decomposition given by algorithm: R_1 : CB R_2 : ACNot dependency preserving as $\pi_{R_1}(F) = \text{trivial dependencies}$ $\pi_{R_2}(F) = \{C \to B\}$ Union of these doesn't imply $AB \to C$

All possible decompositions: {AB, BC}, {BA, AC}, {AC, CB} Only the last one is lossless!

Lossless and dependency-preserving decomposition doesn't exist.

Equivalent Dependency Sets

F, G – two sets of FDs on schema R

F is said to <u>cover</u> G if $G \subseteq F^+$ (equivalently $G^+ \subseteq F^+$)

F is equivalent to G if $F^+ = G^+$ (or, F covers G and G covers F)

Note: To check if F covers G,

it's enough to show that for each FD $X \to Y$ in $G, Y \subseteq X_F^+$

Canonical covers or Minimal covers

It is of interest to reduce a set of FDs F into a "standard" form F' such that F' is equivalent to F.

We define that a set of FDs F is in 'minimal form' if

- (i) the rhs of any FD of F is a single attribute
- (ii) there are no redundant FDs in F that is, there is no FD $X \rightarrow A$ in F s.t $(F - \{X \rightarrow A\})$ is equivalent to F
- (iii) there are no redundant attributes on the lhs of any FD in F that is, there is no FD $X \to A$ in F s.t there is $Z \subset X$ for which $F \{X \to A\} \cup \{Z \to A\}$ is equivalent to F

Minimal Covers

useful in obtaining a lossless, dependency-preserving decomposition of a scheme R into 3NF relation schemas

Algorithm for computing a minimal cover

R – given Schema or set of attributes; F – given set of fd's on R

Step 1: G := F

- Step 2: Replace every fd of the form $X \to A_1 A_2 A_3 ... A_k$ in G by $X \to A_1$; $X \to A_2$; $X \to A_3$; ...; $X \to A_k$
- Step 3: For each fd $X \to A$ in G do for each B in X do if $A \in (X - B)^+$ wrt G then replace $X \to A$ by $(X - B) \to A$

Step 4: For each fd
$$X \to A$$
 in G do
if $(G - \{X \to A\})^+ = G^+$ then
replace G by $G - \{X \to A\}$

3NF decomposition algorithm

R – given Schema; F – given set of fd's on R in *minimal form*

Use BCNF algorithm to get a lossless decomposition $D = (R_1, R_2, ..., R_k)$ Note: each R_i is already in 3NF (it is in BCNF in fact!)

Algorithm: Let G be the set of fd's not preserved in D For each fd $Z \to A$ that is in G Add relation scheme $S = (B_1, B_2, ..., B_s, A)$ to D. // $Z = \{B_1, B_2, ..., B_s\}$

As $Z \to A$ is in F which is a minimal cover, there is no proper subset X of Z s.t $X \to A$. So Z is a key for S! Any other fd $X \to C$ on S is such that C is in $\{B_1, B_2, ..., B_s\}$. Such fd's do not violate 3NF because each B_j 's is prime a attribute! Thus any scheme S added to D as above is in 3NF.

D continues to be lossless even when we add new schemas to it!

Multi-valued Dependencies (MVDs)

studCourseEmail(rollNo,courseNo,emailAddr)

a student enrolls for several courses and has several email addresses rollNo $\rightarrow\rightarrow$ courseNo (read as rollNo *multi-determines* courseNo)

If (CS05B007, CS370, shyam@gmail.com) (CS05B007, CS376, shyam@yahoo.com) appear in the data then

(CS05B007, CS376, shyam@gmail.com) (CS05B007, CS370, shyam@yahoo.com)

should also appear for, otherwise, it implies that having gmail address has something to with doing course CS370!!

By symmetry, rollNo $\rightarrow \rightarrow$ emailAddr

More about MVDs

Consider studCourseGrade(<u>rollNo,courseNo,grade</u>)

Note that rollNo →→ courseNo *does not* hold here even though courseNo is a multi-valued attribute of student

```
If (CS05B007, CS370, A)
(CS05B007, CS376, B) appear in the data then
(CS05B007, CS376, A)
(CS05B007, CS370, B) will not appear !!
```

Attribute 'grade' depends on (rollNo,courseNo)

MVD's arise when two unrelated multi-valued attributes of an entity are sought to be represented together.

More about MVDs

Consider

studCourseAdvisor(<u>rollNo,courseNo</u>,advisor)

Note that rollNo $\rightarrow \rightarrow$ courseNo *holds* here

If (CS05B007, CS370, Dr Ravi)
(CS05B007, CS376, Dr Ravi)
appear in the data then swapping courseNo values gives rise to existing tuples only.

But, since rollNo → advisor and (rollNo, courseNo) is the key, this gets caught in checking for 2NF itself.

Alternative definition of MVDs

Consider R(X,Y,Z)

Suppose that $X \longrightarrow Y$ and by symmetry $X \longrightarrow Z$

Then, decomposition D = (XY, XZ) should be lossless

That is, for any instance r on R, $r = \pi_{XY}(r) * \pi_{XZ}(r)$

MVDs and 4NF

An MVD $X \rightarrow Y$ on scheme R is called *trivial* if either $Y \subseteq X$ or $R = X \cup Y$. Otherwise, it is called *nontrivial*.

4NF: A relation R is in 4NF if it is in BCNF and for every nontrivial MVD $X \rightarrow \rightarrow A$, X must be a superkey of R.

studCourseEmail(<u>rollNo,courseNo,emailAddr</u>)
is not in 4NF as

rollNo →→ courseNo and

rollNo →→ emailAddr

are both nontrivial and rollNo is not a superkey for the relation